
Increasing system security by interdomain
communication analysis and brute-force auditing

Wojciech A. Koszek
dunstan@FreeBSD.czest.pl

IX Liceum Ogólnokształcące im. C. K. Norwida w Częstochowie
Krajowy Fundusz na Rzecz Dzieci

Abstract

Typical approach to communication in modern computer environments is based
on passing data formated with strictly defined rules between two or more end-points.
Detailed analysis of such process may lead to interesting results, especially in com-
puter security area. This paper is a result of research related to ways of communica-
tion between untrusted domains in UNIX operating system and a new methodology
of source code auditing. Author has considered not only typical and well known
technical problems, but also man-hour cost and target of auditing strategy.

1 Introduction
Auditing has always been hard for software projects, especially when such software is
critical for data and machine security. Almost every layer of software structures might be
a potential danger: from operating system, through user applications (text editors, win-
dow managers) to remote access services (OpenSSH sshd daemon). Practise has shown
that auditing is costly in the sense of time and the work which needs to be spent in or-
der to bring useful results. In this paper author presents effecitive strategy of auditing,
which divides software product into untrusted domains, and shows potential vectors of
attack which can be used by a hacker. By analysis of such a relation between domains,
sometimes very specific problems can be discovered easily. Presented methodology of ex-
ploitation, later called brute-force auditing, can be used to mass-disclosure of dangerous,
often critical problems.

This paper is divided into four parts. Second chapter is a general introduction to the
topic: presents audit strategy, explains nomenclature used (domain definition, domain
type and characteristics) and communication ways discussed. Third chapter contains re-
sults of author’s work and experiences gained from UNIX code auditing, most common
and possible sources of existing problems. Fourth chapter contains summary information,
effects and future directions of the research.

Sample bugs presented in this paper were discovered in the FreeBSD system [1], de-
rived from BSD, the version of UNIX developed at the University of California, Berkeley.
Thus every case refers to the FreeBSD environment. Since mechanisms available in that
system are widely used in other UNIX variants, results of research may concern also other
systems, which won’t be discussed.

2 Strategy of audit
In modern computer environments communication between domains is present every-
where. A typical user does not even imagine how much time and power is spent on
transferring data used for further processing. Although "domain" has many meanings,

1



this paper uses only one of them – a domain as untrusted, separated environment, which
acts as a potential sender/receiver of data packed in defined format. Thus, a domain might
be understood as a function, complete application, operating system kernel, networked
host or group of hosts. These completly different objects have common characteristics:
all of them require data packed in format consistent for both communication participants.
Also, the most common case is dependency of later processing on result obtained earlier.
This is why corruption of single object very often causes undefined behaviour of entire
domain.

Of course context will change: while speaking about low-level function written in
machine code, communication will be based on pushing arguments in a correct order
onto the stack, popping result from the stack (architecture-specific operations), but while
transferring data between kernel and user, communication will be based on allocating
data in higher layer. Such a situation looked interesting, since not always both sides of
communication exchange data in consistent way, not always programmer is able to predict
format of input data. Simply not every domain may be called "trusted". This is why audit
might be more effective if done in specified order:

• cross-domain communication analysis

• data integrity checks

• validity checking

• implementation details

Although these conditions look obvious in theory, they are all intertwined with each
other in practice, this is why author dropped such division just at the beginning of the
research.

In the closed source software, analysis of these cases pushes researchers to advanced
reverse engineering techniques [2], [3]. In the open source software this is possible by
source audit. Auditing of every source file in an operating system distribution would not
be possible for one person and would be very difficult for a team of researchers. Full
audit was firstly chosen by OpenBSD developers [4], but amount of work caused that this
idea was dropped. In order to chose proper vectors of attack, question to be asked before
starting research was – "What to audit?". Factors which directed author’s eyes to specific
areas of operating system functionality were:

• availability for the user

• possibility of exploitation

• consequences of eventual attack

It was obvious that availability will probably mean system applications auditing. Only
those with privileges elevated in execution time were chosen. Possiblity of exploitation
differs between attacks researched and is highly dependant on auditors’ knowledge, thus
bugs which fistly looked complicated, at the end of the research seem to be obvious.
The results are most interesting from the attackers’ point of view. Not only machine
overtake were studied, since these attacks appear to be less popular, but mostly Denial
of Service (DoS) attacks, which in many cases may be more dangerous: Internet hosting

2



and scientific environments where continuous computation, access and availability are
needed.

Order of audit and chosen vector of potential attack need to be analyzed separately.
Control flow is completely different in user application and in the internal system struc-
tures. These situations have shown the need of automatization of audit process. Of course,
there are some commercial products, which can help open source projects [5], but none
of them is publicly available, making it at once hard to extend, test and prove that such
testing software does not bring false sense of security. Mass-auditing could raise software
security several times. At the first glance, this might not seem as an effective way of anal-
ysis. In fact, the truth is completely different: automated and well planed testing strategy
was the reason for discovery of the bugs presented in this paper with minor man-hour
cost.

For the sake of the discussion on the research results communication might be divided
in three classes:

Function to function This topic will not be discussed here in great detail since it has
become very popular ([6],[7],[8]) and is well known nowadays. Basic situation:
implementation of machine instruction interpretation lets the attacker modify nor-
mal instruction flow by injection of malicious code onto the program’s stack which
executes it automatically, the same doing attacker bidding.

Operating system to application in user space Typically not taken into account, but present
in UNIX systems family from the beginning. Examples might be well known func-
tions responsible for system environment interaction – sysctl(3) or kernel notifica-
tions mechanisms like devfs and procfs filesystems.

User-space application to kernel-space: The most dangerous, since successful attack
may lead to full access to target machine or at least cause denial of service and
crash.

Also methodology of attack differs between problems discovered: audit of source
code block chosen by untrusted domain analysis and so-called brute-force methodology.
Domain analysis has been discussed above. Brute-force methodology is not very popular
but very effective: even without very detailed knowledge, a determined attacker can cause
system crash. Reason is simple: brute-force auditing is based on passing random data, but
doing it dozens or hundreds of times, while observing application behaviour.

3 Results
Typical way of doing audit is to review program’s source code line by line with security
kept in mind. This way of security review is most effective, but good for small, non-
complicated programs. If application grows in time, audit will become difficult, is only
possible. This chapter presents alternative methods of auditing, which have been used by
the author.

3



3.1 Interdomain communication analysis
ioctl(2) function was the main subject of cross-domain communication study, but also
other ware inspected as well. Context differs between functions (*cntl functions require
file descriptor as their basic argument, were either sysctl(3) operate as is, in a thread
context or eventual arguments need to be packed respectively), but the general scenario
remains the same: data packed in user-space gets transferred from code executed in the
least privileged procesor level (so called rings on x86 architecture) to kernel space. This
address space is directly available for code executed in the most privileged level - operat-
ing system kernel. Thus, kernel needs to make proper interpretation: copied data might be
the content which is ready for being dispatched, or it may contain pointers to additional
data. First situation is simplier, and does not need explanation. Second case is more com-
plicated, since it requires from kernel programmer to copy data located in user fragment
of address space to buffer with enough space to contain data structure. This operation typ-
ically is not dangerous, since tools available with system distribution are used for proper
interpretation of structures’ fields, thus filling them with proper data. This is why ifcon-
fig(8) will not put negative value in the ’len’ – field of ifconf structure describing length
of network interface list available in system. But inquisitive user may choose that value,
and discover new ways of system exploitation. This is a first example of a discovered bug
[13]: ifconf() did not do data validity checking passed and thus used negative value to
allocate memory through malloc(9).

1 panic: wrote past end of sbuf (0 >= 0)
2 KDB: stack backtrace:
3 panic(c0663212,0,0,d94b0bd8,c04f6a8f) at panic+0xeb
4 _assert_sbuf_integrity(c1a2a4a0,c1a2a400,c1bfb2e0,d94b0c34,c053dc99) at _assert_
5 sbuf_integrity+0x3b
6 sbuf_bcat(c1bfb2e0,d94b0c08,10,1,0) at sbuf_bcat+0x1b
7 ifconf(c1c86dec,c0086924,d94b0c60,c1bd1780,c1bd1780) at ifconf+0x129
8 ioctl(c1bd1780,d94b0d14,3,0,292) at ioctl+0x11e
9 syscall(2f,2f,2f,0,bfbfecc8) at syscall+0x128
10 Xint0x80_syscall() at Xint0x80_syscall+0x1f
11 --- syscall (54, FreeBSD ELF32, ioctl), eip = 0x8048517, esp = 0xbfbfe81c, ebp =
12 0xbfbfec78 ---
13 Uptime: 4m38s

Lines 10-7 show instruction flow from trap gate handler (also know as "software in-
terrupt"), system call and ioctl(2) handlers, and finally ifconf() function. Later lines show
function calls, where crash has happened.

Similar problem existed in if_clone_list() function [14]: passing negative values via
if_clone structure lead to OS crash (also known as kernel panic).

Analysis of TTY size handling code seemed to be interesting. Since setting virtual
terminal size is obligatory action taken by the user, user-space application available with
standard software distribution, stty(1), could be used. Typical values were replaced with
negative ones, which lead to a disclosure of bug [17] in editline(3) library functions re-
sponsible for memory allocation. Important applications were linked with this library,
from which cdcontrol(1), lpc(8), pppctl(8) were executed with elevated privileges.

These three examples presented above were caught by auditor’s eyes. Audit took time,
and although results were important for system developers, it was also proof that some
amount of time counted in man-hour needs to be sacrificed, in order to raise security
level. It also showed that keeping functional programming secure not always is a major
target even for very experienced and well educated programmers.

4



3.2 Brute-force auditing
Bugs in lpc(8) [15], which is funny, in rs(1) [18] and compability code responsible for
handling PECOFF binaries [16], were disclosed with brute-force method. First case was
present in lpc(8) application. Linked with editline(3) library (handling for a used input),
is a line printer control program. If data came from a terminal, it used el_gets(3) function,
otherwise, fgets(3) was used. User could send malicious data through fgets(3), skipping
variable initialization for editline(3) library, and causing lpc(8) to crash.

rs(1) used for reshaping data array took number of rows and columns from command
line. Due the lack of validity checking, it had problems with handling malicious values.
Trivial script written in Perl passed string, group of strings and a number as command line
arguments to applications in random order. After rs(1) received SIGSEGV, it was easy to
track:

$ echo test | rs 1 -99999999999
zsh: done echo test |
zsh: segmentation fault (core dumped) rs 1 -99999999999

Handling of executable files may also be used as communication way, since low level
structures of an executable are interpreted by operating system kernel in order to properly
initialize structures needed for further execution. The idea of this attack was to provide
malformed content and cause system crash. Objective was reached and proved not only
direct danger, but also low level of difficulty of such an attack: to satisfy validity and
integrity checks first few bytes were taken from normal executable file, the rest was filled
with data comming from /dev/urandom. Everything was done by the /bin/sh script which
looped actions described above and worked for about 10 minutes. Method might be called
semi brute-force auditing, since data was not fully random.

3.3 Conclusion
Disclosure of these problems were coordinated with FreeBSD team – either through Se-
curity Officer or FreeBSD mailing lists. These local DoS attacks were reported and fixed,
just like other problems, which had to be coordinated (editline(3) library code is shared
and synchronized with NetBSD distribution).

4 Summary
User-space application analysis did not differ from a typical situation: after obtaining
memory dump file, gdb could be used to analyze it, thus documenting a bug in a matter of
minutes. Author has found the UNIX kernel auditing topic most interesting. Differences
between user-space and kernel-space seemed to be the biggest problem, and analysis took
most of the time, since it requires deep understanding of almost every aspect of system ar-
chitecture: chosen coding conventions, data structures, function flow and methods of data
dispatching ([9], [10], [11], [12]). Author has to admit that missed one problem related to
static buffer allocation in ifconf(). The bug was discovered few days after author’s local
DoS disclosure and was based on fact, that space for kernel data structures is allocated
from one piece of address space managed by kernel allocator, which does not clear mem-
ory after object releasing. Memory area destined for object targeted to user-space needs to

5



be zeroed explicitly with bzero(3) or M_ZERO in malloc(9), so that no additional data will
leak after data movement from kernel to user space. It also seems that kernel-side buffer
overflows are not very common these days, since none of almost 4000 ioctl(2) handlers
appeared to be vulnerable to that kind of attack. Although kernel-related problems seem
to be the most time-consuming, results should satisfy potential attackers. They are also
self-documenting – discovery of bug makes it unnessesery to analyze with kernel debug-
ger. Author helped to increase FreeBSD kernel security and to develop a few fixes for
kernel-side code. Although programmers are focused on secure solutions while bringing
new features to operating systems, there are still some undiscovered bugs.

References
[1] FreeBSD project, http://www.FreeBSD.org.

[2] Working Conference on Reverse Engineering
http://www.cc.gatech.edu/conferences/, (1995-2005).

[3] "Buffer Overrun in Microsoft RPC service", LSD Research Group, 2003
http://www.lsd-pl.net/special.html .

[4] OpenBSD Project, http://www.OpenBSD.org.

[5] "Automated Error Prevention and Source Code Analysis" –
http://www.coverity.com/ .

[6] "Smashing The Stack For Fun And Profit", Phrack 49, AlephOne, 2000.

[7] "UNIX Assembly Codes Development for Vulnerabilities Illustration Purposes",
LSD Research Group, 2002 http://www.lsd-pl.net/unix_assembly.html.

[8] "Kernel Level Vulnerabilities – Behind the Scenes of 5th Argus Hacking Challenge",
LSD Research Group, 2002 http://www.lsd-pl.net/kernel_vulnerabilities.html .

[9] "The Design and Implementation of the 4.4BSD Operating System", Marshall Kirk
McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman, 1996.

[10] "UNIX internals – The New Frontiers", Uresh Vahalia, 1996.

[11] "The Design and Implementation of the FreeBSD Operating System", Marshall Kirk
McKusick, George Neville-Neil, 2005.

[12] "Solaris Internals", Richard McDougall and Jim Mauro’s, 2000.

[13] "Local DoS from user-space in ifconf()", W.A. Koszek, 2004
http://www.freebsd.org/cgi/query-pr.cgi?pr=kern/77424.

[14] "Local DoS from user-space in if_clone_list()", W.A. Koszek, 2005
http://www.freebsd.org/cgi/query-pr.cgi?pr=kern/77748.

[15] "Use of uninitialized variables in lpc(8)", W.A. Koszek, 2004
http://www.freebsd.org/cgi/query-pr.cgi?pr=bin/77462.

6



[16] "Local DoS in sys/compat/pecoff (+ other fixes)", W.A. Koszek, 2005
http://www.freebsd.org/cgi/query-pr.cgi?pr=kern/80742.

[17] "Misuse of el_init() can lead multiple programs to SIGSEGV", W.A. Koszek, 2005
http://www.freebsd.org/cgi/query-pr.cgi?pr=bin/80346.

[18] "rs(1) handles command line arguments improperly (SIGSEGV)", W.A. Koszek,
2005 http://www.freebsd.org/cgi/query-pr.cgi?pr=bin/80348 .

7


