ALL PROGRAMMABLE

Soft FIT Reliability Zynq-7000 AP SoC

Austin Lesea, Wojciech Koszek, Glenn Steiner Gary Swift, and Dagan White

Xilinx, Inc.

April 2014

© Copyright 2014 Xilinx

Zynq-7000 in 1 picture: ARM CPU + FPGA fabric

XILINX > ALL PROGRAMMABLE.

> Zynq SEU Testing Methodology

FIT Results Based on Radiation Measurements

> Possible Configurations for Reduced FIT

Summary

ALL PROGRAMMABLE

Testing Methodology

© Copyright 2014 Xilinx

Objective

Obtain soft FIT data based on SEU proton beam measurements while the processor is executing code representative of a typical user application.

XILINX > ALL PROGRAMMABLE.

How we tested?

XILINX ➤ ALL PROGRAMMABLE..

Page 7 ZYNQ

© Copyright 2014 Xilinx

What Was the Test Code and What Did it Cover?

> Xilinx proprietary System Level Testing OS

- Proven test suite used for testing PowerPC/MicroBlaze/ARM CPUs
- Used across Xilinx for all silicon processors since 2008

> Very aggressive testing and error identification

- Continuous result checks rather than checks at end of sequence of operations
- > Executes in Symmetric Multiprocessing Mode

> Test application code mix is representative of typical code mix

- Loads/Stores
- Branches
- Conditionals
- Integer / Floating Point / NEON
- Exceptions / Interrupts

What was tested?

> APU

- Core 0 and 1
 - A9-MPCore
 - I Cache
 - D Cache
 - NEON/FPU
- Snoop Control
- L2 Cache
- OCM
- OCM Interconnect
- MMU
- GIC

> IOP

- CAN w/ DMA
- Ethernet w/ DMA
- I2C
- SD/SDIO
- UART
- NOR & SRAM Interfaces
- GPIO
- IO MUX & MIO

> PS / Other

- DDR/DMA Controller Logic
- Central Switch
- Device Configuration
- XADC
- System clocks

XILINX > ALL PROGRAMMABLE.

Page 10 ZYNQ

© Copyright 2014 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

Logging

> All processor exceptions (interrupts) including:

- Parity errors
- Invalid instructions
- Data and Pre-fetch Aborts (Invalid memory access)
- SCU Errors
- MMU Errors
- TAG RAM Errors
- Secure mode exceptions
- Invalid or Unexpected Interrupts

System hangs

- One observed (0.67 FIT)

Software data result compare errors

Zero observed

Test Facility

- > The cyclotron can accelerate protons from 1MeV to 68MeV
- For this beam line the diameter of the beam spot can be up to 6 cm, but we used smaller one
 - Just to cover Zynq's die
- Running experiments in the beam was fully automated to eliminate user errors

Testing

Target platform

- ZC702 board with 7020
- > Over 25 hours of testing over 3 days
- > 500++ experiments performed
- > 5000++ upsets documented

- Equivalent to 175,000 years of Terrestrial Radiation exposure
 - New York City
 - Correlated via Xilinx Rosetta Experiments over 10 years and 6 generations of products

XILINX > ALL PROGRAMMABLE.

ALL PROGRAMMABLE

FIT Results Based on Radiation Measurements

© Copyright 2014 Xilinx

Measured Results Better Than Predicted By A Factor 2!

- > Zynq data is based on TSMC 28nm process node
- > Prior estimates were based on ARM and TSMC data

> ARM made certain assumptions on design implementation

- Xilinx design implementation exceeded these assumptions

> All ARM and TSMC data is covered by their NDA with Xilinx

- prohibited from sharing their numbers

Proton Beam Testing Derived FIT

- Xilinx has a significant lead in SEU measurement, reporting and mitigation
 - Xilinx performs accelerated soft error testing and in-situ testing
 - Xilinx UG116 documents FIT/Mb data for its devices
 - Xilinx FPGAs outshine competitive FPGAs in FIT calculation
 - Average of 2X better FIT numbers for equivalent FPGA density/functionality
 - Xilinx offers Mitigation IPs (SEM) to improve FIT in PL
 - Xilinx is presenting more on this topic during 2nd day
 15:15 16:30, Session XII: Errors in Memories

Results available under NDA

^{***} Result based on typical design using a significant amount of logic fabric.

^{*} Xilinx beam test results for a typical embedded application.

^{**} Measurement accuracy +- 15% with a 95% confidence interval

Silent Data Corruption (SDC)

- > SDC is where the result of a process is not correct
- > No interrupt, no exception, no error is flagged, no timeout
- > BUT the arithmetic result is wrong!
- > Failure rate is less than 15 FIT in these tests

ALL PROGRAMMABLE

Possible solutions to reduce FIT (Sample configurations)

Scenario: Error Detection is Required Reboot is Acceptable

- > PS monitors parity errors/exceptions
- Reboot on error detected

FIT = 0.67

- Defined as one non-detected error (processor hang)

> Zero with Watchdog timer in PS & Backup watchdog timer in PL

Scenario: Reduce FIT by 67% (3X time to fail) Some Performance is Compromised

> L2 Cache Disabled

- Performance impact :
 - Zero for small arrays and "localized" code to 70% for large random arrays

> OCM not used, or BRAM with ECC is used

> Parity and watchdogs per previous scenario

Performance based on read, write, and read/write tests both with random and with varying memory strides

Scenario: Reduce FIT to ~1/4th (4X time to fail) Performance is Compromised

Single Core Used

> L2 Cache Disabled

- Performance impact :
 - Zero for small arrays and "localized" code to 70% for large random arrays

> OCM not used, or BRAM w ECC used instead

> Parity and watchdogs per previous scenario

Summary

>Zynq FIT is half of TSMC/ARM predictions

> Xilinx is confident of its results

- Large number of tests
- Test process proven over multiple generations of chips
- Measurement accuracy +- 15% with a 95% confidence interval

> Techniques exist enabling reduced FIT implementations

- Placement of watchdogs in PL lead to 0 undetected events

