
DRAFT: Requirements for a
XymbiOS kernel to meet industry

standards
Wojciech A. Koszek

05.08.2008

Abstract
XymbiOS is the code name of the operating system kernel which needs to be
designed for the ParalleX execution environment. The novelty of the ParalleX design
and the timeline for which the project is targeted (year 2020) makes the whole
design process complicated. It requires the set of final requirements to be specified
very tightly, so that the top-down design methodology could be used within the
implementation process. On of the goals for XymbiOS is not only to manage highly
parallel computer architecture in order to achieve extreme performance gains, but
also to create enough abstraction to make it usable in computation-intensive
production environments.

In this short draft paper I present things which industry standards require
from the OS functionality nowadays. Since the hardware support is strictly related
to the functionality that OS can or can not provide, in the first section I propose
changes which I believe will have to be brought to the ParalleX architecture design
in order to make OS implementation easier. Second section is both the introduction
to the system requirements and introduction to my view on UNIX, it’s success and a
reason why it made research a bit stagnant. Later, I propose two approaches of
distributed operating system, with all their advantages and disadvantages. The rest
of this document is a slide between topics known to cause problems in OS
development both with proposal of eventual solutions in ParalleX context. At the
end, I present several projects which I think are worth looking at and which could
help a ParalleX group to establish official XymbiOS document related to it’s
requirements and proposed design directions.

Each section containing questions has been discussed with ParalleX group
and a lot of useful responses have been provided. However, I decided to leave them
here for a matter of documenting them, just not to get them lost. Some of questions
repeat between sections, since some of them seem to touch more than one
subsystem. I try to answer each question separately within a context of discussion.

Proposed hardware changes
I would like to propose several improvements which can make OS implementation
possible and more reliable.

Hardware parcel handling and software parcel handling.
By software parcel handling I mean a mechanism that requires software assistance
in processing. Receiving specific types of parcels should involve immediate
processing in exceptional manner – just like we do in conventional processors, when
important event takes place, and a stream of processing needs to be interrupted.
System calls and traps can be an example of such an exception, which needs to be
handled soon after happening.

Hardware parcel handling should be designated to the work that can easily be
dispatched on the hardware side. Let me just make an example:

Two parcels are being sent to the X node. First parcel creates a thread that
starts actual work. Second parcels contains “Migrating isn’t allowed” request.
Second parcel is immediately dispatched, even when still lying in a parcel queue.
NO-MIGRATE “flag” within a processor is set and until processing finishes, if the
other parcel with a request of migration is received, automatic response is
generated informing the other node, that the thread can’t be migrated from X.

The reasoning between distinguishing between two types of parcels handing
methodologies are as follows:

 Context saving in case of a need to handle an exception is costly

 Messages send through parcel mechanism can happen very frequently and
involving software in every parcel handling isn’t needed

 Software won’t help in generation of a response to some of the messages.
Let say following have been sent to the node: “Are you free”, “Can you take a
parcel from me”, “Checkpoint”, “Suspend”, “Resume”, “Can migrate”, “IO to
node XZY”. All of those questions that might be present in CPU protocol can
be answered directly by bitwise analysis of CPU state, and parcels can be
generated without a need to invoke a software.

Hardware performance counters
Just to make sure ParalleX is profiled in every development stage, I believe there
should be an assistance from the hardware side of some sort in terms of code
profiling. The way in which we could distinguish which kernel thread state belongs
to which user-level thread is to be discussed.

My proposal is based on the fact that a lot of improvement in current systems
code from the possibility to see what actually happens on the CPU. Not only it can

act as a performance measurement sandbox, but can also be used in real-time, to
help the system to figure out, how to affect system functionality to gain maximum
performance (e.g. scheduling).

Introduction: the UNIX problem
UNIX is operating system deployed widely within the industry. Great design

let engineers to come up with number of implementations, which are used till know.
Opinions expressed in this article are based on my experience related to FreeBSD,
Solaris and Linux kernel, which I also view as “UNIX”.

Since the time of it’s introduction, UNIX has became some sort of a problem
in the operating system research.

Software systems research is irrelevant

There were number of experiments within the OS community that targeted to
repeat this success, but none of them really survived in untouched form to these
times.

The UNIX environment thanks to the POSIX started to define levels of usefulness.
Some of the ABI calls should be changed to match real-world needs, but in my
opinion that it’s pretty amazing that UNIX API become pretty much the same, when
industry needs tend to change. Later, I note some facts which I think are the reason
that let the API to as mature as It is right now. I think several concepts from the
UNIX functionality and architecture should act as important hints for the future of
XymbiOS and ParalleX in general.

The UNIX way
I believe that a lot of the UNIX success comes from the unification and simplification
of the system. The concept of having everything represented by a file of different
types has shown to be useful and right. This is why I think representing every
request by a parcel of different type, which is going to be dispatched appropriately
is right. Just like UNIX has it’s own “protocol” of communication between user and
kernel space, XymbiOS could have it’s own unified way to communicate between
node’s boundaries.

Having the same API to work for a textual file, stream or device just works. We do
have the same identifiers both for file descriptors and sockets . This is why it’s
possible to tell:

READ 100 BYTES FROM THIS DESCRIPTOR

http://herpolhode.com/rob/utah2000.pdf

And don’t really care about what is really represented by particular descriptor.

The concept could change to even further unify the OS structure. Right now calling
socket-specific calls on a descriptor that represents typical, ASCII file will return an
error. Going to the direction in which Plan9 went could be interesting. Having
everything represented by a typical path name would let us to stay away from
distinguishing the networking operations from a typical, file system related ones.
Since every device in ParalleX is covered by PGAS and reachable via parcel
communication mechanism, it is believed that access to disk and memory mapped
device will look the same. Some ideas from UNIX resulted in my proposal of unified
exception handling presented later.

System architecture
Running operating systems on huge number of processing elements lets us to pick
two approaches. One is that each CPU has it’s own operating system, and whole
kernel-side specific processing is done on that particular CPU from the point of view
of the operating system.

 Another approach exercises the possibility of having one operating system
that manages all the processing elements by scheduling thread all over the
available cores.

Each of there approaches has advantages and disadvantages.

One core == One XymbiOS instance
With each CPU having it’s own microkernel instance, we could possibly simplify the
OS code to the minimum: kernel level, machine-dependent parts would be
responsible for handling communication (via PARCELS for example) and relay
system-call requests to upper layer software. Debugging would be minimized, since
the only thing which would have to be figured out in case of a problem is a state of
particular core and a state of a thread running on it. Since the thread level
processing within the ParalleX is going to be minimized to the minimum, if only
thread level processing granularity (piece of the work that is to be done) could let
us to do so, this model could be very effective from the programmers stand point.
Such a model brings a lot of questions on system consistency: how to manage VM
layout, so that each XymbiOS instance sees “the same” object all over the PGAS.

Q: How such a system could keep information about particular object lying in the
DGAS consistent?

Hardware parcel handling could be used as a way to keep the information between
VM views (view of the VM from each XymbiOS instance).

Q: How to preserve the protection checks within the DGAS? For example, since
DGAS can contain both the general purpose processors as well as high-speed
cryptography hardware, how one can prevent from accessing to the unwanted
resource, when each XymbiOS has private view of the system. Is some sort of global
container where such a global attributes like security privileges needed?

SUGGESTION: Could security model look like this: no matter what the LOCAL core
does in it’s LOCAL memory, it is seen as being “privileged” and access is granted. If
the LOCAL core want to access the REMOTE range of addresses, it has to ask for a
permission. It’s up to the REMOTE core to receive a request (parcel?) from the
LOCAL node and perform privilege check, and if the check succeeds, response
parcel is generated, and access to the REMOTE memory is granted.

Thousand of cores == one XymbiOS instance
Another approach would be to treat XymbiOS as a central manager for processing
across all available processors. One XymbiOS would have to take care of the
management of security, VM subsystem, scheduling and I/O. Number of advantages
come from this design as well – having one central part of the system make VM
management easier.

Q: Probably VM consistency could be kept away from the system?

Once hardware parcel handling will be developed, keeping consistency across the
system should be a problem any more.

Q: How would the system software interact with VM subsystem in this model? Right
now RISC processors designate some set of handler related to TLB, cache hit/miss
processing and it’s up to the programmer to choose the right way of management.

Some events like an access to privileged DGAS address must have a way to
signalize an error to the software. Access to the memory range within a locality can
be resolved by a controlling node itself. In case of a problem, I believe it should
create a parcel directed to itself. This is what I call UNIFIED EXCEPTION HANDLING,
and what probably deserves a better name. The key concept is that no matter if the
access is local or remote, exception handling could be implemented entirely by
parcel dispatching.

Q: Is there any known concept of “sending” a parcel from the node to itself?

Low-Level startup
Typical operating system designates one CPU to lead the startup procedure based
on a machine-specific list of steps. Later on in the booting process, once the
“master CPU” has already bootstrapped itself, the other CPU elements are woken
up. The initialization procedure is iterative, which means that the time increase is
linear to the growth of the number of cores. It’s not a problem for 4 or 8-core

machine, but it might appear as a problem for large number of processing elements
within the ParalleX.

I believe some startup in “lazy” manner need to be exercised, in which only
those cores that are needed for computation are woken up.

Q: What happens if the XymbiOS has an error and “machine” reboot is required.

Since ParalleX is not targeted to the environments where frequent, typical reboots
are required, or needed at (all) I define “reboot” as the last sort of operation, which
can be useful in case of machine/programmer error, where bogus data/computation
has been spread out all over available nodes. Since specific group of nodes can be
“polluted”, I believe each node running under XymbiOS control should have a way
to “restart” itself once “REBOOT NEEDED” request is received and should be able to
redirect it to another nodes as well. Such an event (parcel) should be handed
through hardware parcel handling mechanism, since software might be itself a
reason of failure.

Q: How the suspend/resume (also known as check pointing) works for the ParalleX
computer?

Software trap could be used to jump from typical mode of processing to privileged
mode, as we do on conventional architectures. The reason for jump into “privileged”
mode is that actual state for suspending must contain resources unavailable in
typical, unprivileged mode of execution. Once such state could be packed as a data
parcel, it could be directed to the I/O device for check pointing.

Mechanism known from Xen virtual machine monitor could be taken upon expertise
as well. Node to be suspended could loan the memory access to another node
placed nearby. Since hardware parcel handling could transparently arrange memory
mappings between nodes, it could also let the another node to access local
memory without invoking permission exceptions. Later, such a privileged node
could simply take remote node’s memory and pack it so that it could be easily send
to the mass storage media.

Q: How should such a mechanism encode an address, to which parcel with this
suspended data could be directed?

If “Copy the whole node’s state through another node” approach is chosen,
directing data isn’t a problem, since it would be up to the “copying node” to pick
the destination place of the suspended data. Otherwise, node would have to know,
where to sent it’s saved context.

Small-percent of cores running XymbiOS; the rest for user-
level jobs

Light-weight, short-term threads requiring assistance from the kernel-level code
could benefit from being run on the same core to improve ratio of cache hit in order
to increase code execution performance. My major concern related with short-term
threads Is that cache-related issues might become an bottleneck, since we can’t
actually say at this stage, what the execution characteristics will look like (how
many remote memory accesses will particular thread need, how often it will have to
communicated, what’s the cost of interrupt/exception handling). Separating
operating system activities to only small subset of general number of core MAY
have some positive effect:

 Kernel running on separate cores wouldn’t have to run in privileged mode,
since all communication channels would be related with parcels, which can
easily be controlled in the kernel space

 Cache hit ratio on both the “kernel cores” and “user-level threads” would be
improved

 Designating specific cores to specific task would let some kernel subsystems
to perform aggressive optimizations, since they’d have more uninterrupted
execution time

Main problem in this approach is that I’am not aware of any previous work
which would let me to study eventual advantages and
disadvantages.

Q: How would user-level cores reliably signalize the “kernel cores” that some
important events needing urgent actions had just happened and how such a remote
“kernel core” could react to it?

Debug ability
Ability to debug the OS kernel is very important factor , especially in the
implementation procedure. No matter if the architecture is concentrated around
microkernel concept or the monolithic one, the mistakes do happen, and having
way to track them saves a lot of time in case of a problem.

 For fairly complicated environment to which we can count ParalleX in, I believe the
presence of some sort of kernel-level debugging support is mandatory.

The above comment comes from the fact, that the major advantage in writing
operating system code for moderately decent UNIX systems is the availability of a
kernel debugger. The major advantages of having debugger include:

 Seeing the processor state

 Seeing the system state from the period of time just before the crash
happened

 Being able to list executing context of either the processes or threads

I think that Linux development model really suffers from not having a debugger,
and it was actually strongly criticized in the past. Historically, there were number of
complaints from the Linux kernel developers for not having an official kernel
debugger. This situation hasn’t changed so far, even that two unofficial debuggers
exist.

Mach microkernel had kernel-level debugger from the beginning, and the code
present in the FreeBSD operating system is derived from their sources. It simplifies
bug tracking a lot.

VM subsystem
ParalleX makes use of the notion of Partitioned Global Addressable Space.
Interesting part of XymbioOS design will be designing the VM subsystem, since the
overall architecture of the ParalleX is targeted to the environments, where amount
of memory will be extremely big.

Q: Whether each XymbiOS has it’s own VM subsystem and each XymbiOS instance
has to pay attention on consistency, or rather we have some sort of central VM
view?

Q: What happens, when one instance of XymbiOS gets a request like:

Allocate 100000….. bytes for me

 and such a request can’t be fulfilled with local DRAM memory. Do we send a parcel
to another node about such a request, or do we migrate execution context to the
other node?

Both such requests should be possible, and it would be up to the allocation policy to
choose which is better.

Q: Why parcels couldn’t be used to handle consistency model across the whole
DGAS space as well?

Since each CPU is going to have information about a memory which it’s connected
to, I believe XymbiOS instances could share information about memory consistency
just like people share information about their memory with each other. Having
hardware parcel handling should make such operation possible.

Q: Will this be optimal operation and whether there will be urgent need to inform
local core on what actually happens with remote (other node’s) memory?

Protection
Protection in the UNIX environment consists of several parts:

 Process address space separation

 Process owner separation

 Kernel space/user space distinction, with the later being less priviledged than
the first

Q: Will the protection model include switching between process and kernel mode?

Since the prototype is being implemented on conventional architectures, there is
going to be this split between both privileged and unprivileged execution modes.
Some sort of protection will have to be implemented in native ParalleX architecture
as well, since one buggy process cannot disturb the another one.

Q: What the cost of the switch might be? Right now, in conventional processors, the
cost is becoming a problem as the more and more processors is having a huge
number of resources (registers) that need to be save before the execution context
can be switched.

Q: How to handle security checks within the DGAS?

Scheduler
Q: Will the XymbiOS kernel run on particular number of processing elements and
make use of the others, or rather to run on each particular core.

Typical cases of thread preemption in 1:1 mapping scenario (one kernel thread
mapped on one user-level thread) requires full context switch. Cost of operation like
that is significant. Such model can be useful for real-time execution, which falls
beyond topic of this document.

However, in my opinion possibility of performing an execution in such a way should
be reconsidered, since some computational tasks making heavy use of caching
could benefit from it. Simple but frequent actions like copying/filling a memory
could be implemented that way. Such a core could simply act as “offload” processor
for small, specific set of tasks.

ParalleX execution environment uses 1:M mapping policy (one kernel thread serving
as a window to M user-level thread). Problem with 1:M lies in lack of user-level
scheduler, which could work in conjunction (or completely separately) with kernel-
level scheduler on picking the most appropriate user-level threads for the
execution. Each user-level thread should be able to forcibly preempt other thread
running on other node in such a way, that come back to the previous execution

thread is possible. The problem in typical preemption lies in a need to save a full
processor context, which requires significant amount of time, especially in terms of
user/kernel level privilege switching. Doing it in conventional way makes the whole
concept useless. In order to make light-weight thread scheduling worthwhile,
several functions must be implemented:

 User-level preemption without kernel assistance and without mandatory
privilege switching; similar work in this area has been done in Exokernel
project cited later

 User-thread synchronization without kernel assistance

Proposal
On conventional architectures like x86-related processor switching between 0th and
3rd ring is the most expensive. It would be worth to experiment with possibility to
run privileged code somewhere in between, so that switch cost wouldn’t be so big.

Q: Why couldn’t OS kernel be implemented as a layered software structure
consuming two protection levels at the same time; kernel protection would still
require full context switch, but “intermediate user privilege level” could work with
only necessary state saved; it could even have It’s own exception handlers not
needing kernel-level interaction.

Device architecture
Since the DGAS is going to cover all hardware peripherial that is to be a part of
ParalleX, devices will have to appear as other “active” elements of the system. Such
an idea is motivated by the fact, that other approaches has already been exercised
(e.g. x86 I/O ports) and it appeared to work much worse than memory-mapped
devices in RISC-alike System-on-Chip fashion.

The main reasoning of placing “typical” devices in GAS is that any other core
in ParalleX on which the thread may be executed must have a way to reference to
particular devices, since work can be migrated between the execution units in case
of resource shortage.

Q: How doing something really simple (reading a keystroke from a keyboard)
should look like?

Other approach would be based on hardwiring devices to strictly-specific
processing elements but this way could not work in reliable way: placing high-
density storage close to only one core and relying on it’s permanent availability
sounds wrong, . It dramatically decreases fault tolerance, which is unacceptable.

Since the ParalleX execution environment is supposed to contain
heterogeneous processors, I believe devices put in GAS will behave (more or less)

like other I/O devices: sending a parcel to a device is just like sending a parcel to a
processor. The only major difference is that device-specific parcel should be created
with device driver that is aware of requirement of particular device. The fact of
reception of a parcel would be guaranteed by a method used to connect a device to
system bus. It would be up to the device to dispatch a parcel and involve necessary
processing.

Having a mechanism such as this described above would let to easily migrate
from the prototype working on conventional processors to fully featured ParalleX
working on it’s dedicated hardware platform. Within a prototype working on x86
processors, sending a parcel to a device is nothing more like sending a parcel
structure to a region, in which the device memory is mapped. By doing so, parcel
dispatching code on FPGA board could be exercised. Later, in native architecture,
sending a parcel and dispatching it on a device could become entirely hardware-
related operation.

Problem exists in handling high-priority devices, like realtime-clock. One of
the solutions proposed by Maciej Brodowicz is based on a fact that most types of
computation performed in ParalleX won’t actually require hardwired clock signal to
perform useful action, and that only those nodes that require clock interrupt to
operate correctly such have an access to it.

Another problem is related with a routing of parcels within ParalleX
architecture: keystrokes typed on a keyboard, storage I/O or data to be put on
screen/terminal each have different priority. It’s believed that “NOT ABLE TO
RECEIVE” or “RELAY TO NODE X” parcels should have a higher priority than “I/O
READY” parcels. The fast routing of these messages is left unexplained here and is
going to be a part of research.

Interrupts, exceptions and system calls
I think parcels can be easily used to implement all necessary event handling
methods. I define “interrupt” as an event of high priority that has to be delivered
immediately to the node. It can happen in asynchronous way. Exception is an event
caused by a user interaction and has to be delivered in synchronous manner.
System call is an event generated through the application and is a request of some
type. Priorities of those events won’t be discussed here. However, being able to
redirect parcels to other nodes in the ParaleX would let the XymbiOS instances to
perform a kind of load balancing, so priorities would let the architecture to pick the
closest node in neighborhood.

Being able to receive all of those events as parcels would let the OS designer
to unify interrupt, exception and system call handling and treat it like “just parcel
dispatching”.

Proposal of OS requirements
Several POSIX-compliant systems share some functionality within particular
subsystems as well as in the system itself. I try to outline those, with simple
description of advantages coming from their implementation.

General architecture

Type-aware communication between user/kernel domain
The major problem in communication between user space code and kernel-level
privileged code in UNIX is that they lack proper type checking. There is no proof,
that data packed as “unsigned long” in the user space application is received as
“unsigned long” in the kernel space.

The proper checking of data types lowers a probability of software bugs.
Since the values passed from the user space are often crucial to the security,
proper type checking increases security as well, since there is strict enforcement of
what is to be fetched on the kernel side. For example, in abstract API written in ANSI
C language, sending “unsigned long” variable named “string_length” to the kernel
could look like this:

PxValSend(PXVAL_UNSIGNED_LONG, “string_length”, &str_len);

On the kernel side, receiving the same variable could look like this:

r = Px ValRecv(PXVAL_UNSIGNED_LONG, “string_length”, &str_len)

With r being equal to -1 if there were no “string_length” of “unsigned long” type.
Such a consistent communication mechanism makes it impossible to misinterpret
the variable types.

Process/job/thread identifiers
Without going into much detail I propose implementing some kind of unique
identifiers, which could help to easily reference to particular execution object.

Fetch information from the remote end
Almost all I/O within UNIX is implemented on “file” descriptors – internal structures
unifying system’s architecture. In order to abstract low-level view from the media-
specific implementation details, no medium-specific details are carried up. However,
there are situations in which such a knowledge of remote/local side parameters is
crucial.

In UNIX, when descriptor references a file placed of a physical media,
querying can be done by “fstat” system call. Information returned include data size,

file modification/creation/last access dates, and other data relevant from file-
systems standpoint. When I/O object is a socket, querying can be done in two ways.
One is querying for current state of a local side of the connection. It is done by
“getsockname()” system calls. As a result, programmer is able to fetch both an IP
address and TCP port’s number, which gives him valuable data for further
processing. The second call – “getpeername()” is able to return the very same
information, but for the remote side of connection. Thus, communication channel
can be identified with two calls.

ParalleX could also implement a possibility of identifying a communication
channel, since a knowledge of local and remote sides of the connection in such a
dynamic system will be needed pretty often. Having a way to reference the remote
node in the middle of communication will be important. At a debugging stage local
node might simply want to ask about remote node’s status. At computation time,
information about remote node can be useful to perform conditional actions.

It’s an implementation detail whether “optimized neighbor discovery”
scheme should be done in software of hardware.

Memory allocation and memory management
Some scheme for memory allocation must be implemented. In latest years, typical
trend was to migrate to slab-based allocators, where we allocate/destroy and
garbage collect data structures of the same characteristics. Garbage collecting
within the group of slabs of the same size and destination place can be easily
simplified, since management of small, unallocated number of slabs is much easier
than managing huge number of slabs of varying sizes. It helps to predict cache
behavior as well, since probability of cache misses when slabs are lying nearby is
lowered. Requests to the memory allocator can be easily analyzed and dispatched
to specific processing code, which is “slab-specific”.

Copy-on-write
Copy-on-write mechanism is used nowadays in fork() system call implementation.
Fork() within UNIX environment is used to replicate a current process which is being
executed, so that further execution of the code can follow concurrently. The copy of
an original process (so called a “child” process) is nearly identical to it’s parent,
with the minor exception of process ID and other system-specific fields that have to
be changed in order to identify those processes in unique way within the system.

I speculate that such mechanism could be useful in the ParalleX environment
as well. Copy-on-write could improve backtracking algorithms execution
significantly, where some part of the computation can be continued with changed
parameters on another nodes. Copy-on-write could mean redirecting a “work”
request to other nodes with proper parameter preprocessing both with beginning to
execute the work on the node.

Memory-mapped I/O
If the idea of referencing to every I/O device through the parcel mechanism will be
deployed, this will mean that memory-mapped I/O is already implemented.
Otherwise, way will need careful reconsideration, since memory-mapped I/O is
widely used in nowadays’ applications with big success. Because it’s possible to tie
the underlying object (piece of dynamic memory, file placed on the permanent
storage, memory mapped to the device) things like event logging or data gathering
can be implemented in universal way. So no matter if a service for statistics
gathering wants to aggregate 1TB of data and processes it later, or do it in real-time
or use some special hardware device for offloading, it can do it with only one API.
The functionality is based on how the service has been configured.

Some sort of protection should be implemented as well as a part of the VM
subsystem and it’s interface, so that mapping resources in read-only way could be
possible. This is achievable in the POSIX through madvise() system calls nowadays.

Multiplexed I/O
Several mechanisms for multiplexing I/O exist in the UNIX programming
environment. Lack of standardization procedure on time caused several versions
which appeared in various operating systems, but poll() exists in each version. The
most important function’s parameter is array or structures, each of which contains a
descriptor referring to the object which we want to perform I/O on, and a descriptor
of an action we want to execute (read/write). If any descriptor is ready for the I/O,
poll() returns and lets the programmer to start the I/O process. This mechanism is
useful, when we want to wait for user interaction, fetch data from the network and
log an activity at once.

Having this mechanism in XymbiOS should be taken upon consideration.

Proposed parcel messages
Below, I propose several (pretty obvious) parcel messages. Those can be either
exception/interrupt/system call notifications. I assume we can handle parcels by
software and hardware.

CREATE A THREAD

Since threads are going to live on CPU for a small portion of time, I believe
destroying a thread can be occasional operation. I propose non-standard
way of removing a thread if it appears to be absolutely necessary:
creating a thread with No-Operation instructions and overwriting previous
code should do the job.

DESTROY THREAD

 See “CREATE THREAD” section.

MEMORY/PAGE FAULT

SYSTEM CALL

HARDWARE-specific MESSAGE

Handled entirely in the hardware.

Proposals from the open-source community (a bit
humorous)

FreeBSD project has one internal, developer-only mailing list, where messages with
information and personal content can be sent. Before coming to Baton Rouge I let
FreeBSD people know that I’ll have a chance to visit Louisiana due to the internship
in Thomas Sterling’s group with brief description of what ParalleX and XymbiOS will
be in the future. The overall suggestion which can help a project of that size was to
choose good software license, so that both academic and industry people could
profit from valuable research in HPC field.

Proposal needing consideration (interesting and helpful
projects)

LLVM
Both FreeBSD and Apple Inc. developers are taking a close look at project called
LLVM:

http://llvm.org
LLVM is Low Level Virtual Machine Compiler Infrastructure project. Right now it
comes with C/C++ compiler, which can actually be used to compile FreeBSD kernel,
and is used by commercial companies (Apple). It seems to have great infrastructure
in terms of frontend/backend construction. Together with huge number of code
optimizers and universal Intermediate Representation it makes this project look
very interesting in terms of programming-language playground.

OSKit
OSKit was a research project from the University of Utah. OSKit is a set of libraries,
that makes operating system development really easy. It was possible to write a
simple micro-kernel with just a few function calls. Before running on the bare
hardware, It was possible to compile your kernel as a typical UNIX-alike application,
so that debugging cost could be lowered to the minimum. Implementing simple
“OS” running in privileged mode on x86 that could have a control over interrupts

both in single and multiprocessor system wasn’t a big deal, as it is when
implementing everything by hand.

Unfortunately, OSKIT is proved to not work nowadays with modern tool-chain
(mostly due to GCC changes).

EXOKernel
Exokernel is the old MIT research project:

http://pdos.csail.mit.edu/exo.html
Was mainly targeted to loan as much of the OS functionality control to the user-
space applications as possible. It also included resource allocation management and
resource control. Some research has been made on lightweight exception handling
as well. It’s worth revisiting before making final design decisions.

	Wojciech A. Koszek
	Abstract
	Proposed hardware changes
	Hardware parcel handling and software parcel handling.
	Hardware performance counters

	Introduction: the UNIX problem
	The UNIX way
	System architecture
	One core == One XymbiOS instance
	Thousand of cores == one XymbiOS instance
	Low-Level startup
	Small-percent of cores running XymbiOS; the rest for user-level jobs
	Main problem in this approach is that I’am not aware of any previous work which would let me to study eventual advantages and disadvantages.

	Debug ability

	VM subsystem
	Protection
	Scheduler
	Proposal

	Device architecture
	Interrupts, exceptions and system calls
	Proposal of OS requirements
	General architecture
	Type-aware communication between user/kernel domain
	Process/job/thread identifiers
	Fetch information from the remote end
	Memory allocation and memory management
	Copy-on-write
	Memory-mapped I/O

	Multiplexed I/O
	Proposed parcel messages
	CREATE A THREAD
	Since threads are going to live on CPU for a small portion of time, I believe destroying a thread can be occasional operation. I propose non-standard way of removing a thread if it appears to be absolutely necessary: creating a thread with No-Operation instructions and overwriting previous code should do the job.

	Proposals from the open-source community (a bit humorous)
	Proposal needing consideration (interesting and helpful projects)
	LLVM
	http://llvm.org
	OSKit
	EXOKernel

	http://pdos.csail.mit.edu/exo.html

