
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—This paper presents a test methodology developed at

Xilinx for real-time soft-error rate testing as well as the software

framework in which Device-Under-Test (DUT) and controlling

computer are both synchronized with the proton beam controls

and run experiments automatically in a predictable manner. The

method presented has been successfully used for Zynq®-7000 All

Programmable SoC testing at the UC Davis Crocker Nuclear

Lab. Presented are the issues and challenges encountered during

design and implementation of the framework, as well as lessons

learned from the in-house experiments and bootstrapping tests

performed with Thorium Foil. The method presented has helped

Xilinx to deliver high-quality experimental data and to optimize

time spent in the testing facility.

Keywords—Error detection, soft error, architectural

vulnerability, statistical error, confidence level, beam facility

control

I. INTRODUCTION

To assess the impact of Single Event Upset on silicon

systems, empirical data are necessary. The data are typically

gathered from a DUT equipped with instrumentation and

exposed to a radiation source such as Thorium foil or a high-

energy particle beam. Most efforts are targeted towards so-

called one-shot testing, where each exposure is followed by a

manual read-back from the DUT and data validity check [1].

Regardless of the facility or source of radiation used,

following is an algorithm representing a typical testing

scenario:

SEU-TESTING:

1) Understand general setup and device behavior

2) Tuning the source of radiation to the setup

3) Conducting a static or dynamic test of the DUT

4) Analyzing experimental data

5) Repeat from (3) until enough samples are obtained

Steps 1 and 2 are important, since they help to understand

the scope of testing effort and help with planning, but they are

performed only once per visit to the facility, optimizing them

is not critical and may not bring significant benefits. We

believe that for the general silicon testing this technique may

be appropriate, however we argue that a more methodic

approach for System-on-Chip (SoC) testing is necessary to

deliver reliable data with less error margin and higher

confidence. This paper presents results [2] of a 4-month

project to characterize the Zynq-7000 SoC.

The rest of the paper is organized as follows: In Part II, we

present initial goals and technical assumptions made before

infrastructure the effort start. Part III discusses technical

details behind the setup used and testing facility. Part IV

explains the choice of test code and the process of

bootstrapping our test-bench environment. Part V explains our

automation testing framework used. Park VI presents

summary and discussion on our results.

II: GOALS AND ASSUMPTIONS

The Xilinx Zynq-7000 SoC is a 28nm SoC device [3] where

FPGA Programmable Fabric is bridged through a high-speed

AXI interface [4] to a dual-core ARM Cortex-A9 [5]

Processing System. Within the Processing System are multiple

hard IP blocks surrounding the CPU. A high level block

diagram of the Zynq-7000 SoC structure is depicted on the

following diagram:

Figure 1: Diagram showing a structure of Zynq SoC

 Xilinx has extensive prior experience with SEU

characterization in Field-Programmable Gate Array (FPGA)

devices [6] [7] , and its results are publicly available [8],

however SoC testing with an ARM Processing System has

never been performed. For the purposes of testing, significant

planning effort has been accomplished. Zynq SEU

characterization was a result of work of R&D, A&D,

Marketing and System Software groups, and the requirements

were set after many weeks of discussions. The list of things

which were to be tested includes, but is not limited to:

- Testing of L1, L2 cache and On-Chip-Memory (OCM)

Challenges in Assessing Single Event Upset

Impact on Processor Systems

Wojciech A. Koszek, Member, IEEE, Austin Lesea, Member, IEEE, Glenn Steiner, Member, IEEE

Dagan White, Member, IEEE and Pierre Maillard, Member, IEEE

Xilinx Inc.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

- Testing of both ARM Cortex-A9 cores together with

NEON SIMD ISA

- Testing of DDR controller and AXI interconnect

- Testing of of other hardened blocks suc as Snoop Control

Unit (SCU)

To reach the expected confidence levels and to provide

comprehensive data on each of the blocks, the general idea

was that thousands of data samples were necessary. It is

important to mention that the large part of the design was

driven by the need to minimize costs of the testing effort. The

following table presents approximated hourly rates of the

known testing facilities:

 Facility USD / Hr

 Thorium foil 0000

 Proton 8 700-950

 Neutron 1000-1500

 Table 1: Average hourly rate of known test facilities

For example, with a price as high as 850USD/Hr, the 35

second boot time of the operating system costs:

850𝑈𝑆𝐷

3600𝑠
 × 35𝑠 ≈ 8.26𝑈𝑆𝐷

With a plan to perform several hundred experiments, it was

very important to remove unnecessary wasted time on board

startup. To be able to achieve such effort, members of our

team had both hardware and software background. Moreover

some members were not exposed to Single-Event-Upset

(SEU) testing before. Xilinx performs many visits to beam

testing facilities per year, and one of such visits has been used

to educate the team and to predict possible challenges of the

environment.

III: TESTING FACILITY AND THE SETUP

The following figure 2 shows the layout of the control

facility with a typical setup:

Figure 2: Typical control facility and DUT placement

Some of difficulties encountered include:

- Control room separated from beam room

o Limited visibility of the setup, only though the

video camera

- Connectivity with the DUT is limited

o Typically RS232 (serial port) with cable

expanders. Impossible with modern boards due

to USB cables. Solved by placing a PC in the

beam room

- Highly-reliable board/setup is required, since stopping the

experimentation to adjust the DUT is very expensive

- Heterogeneous environment within the lab

- Many computers running different software with different

operating systems

The beam facility provides only rudimentary equipment,

thus for purposes of extensive testing we devised a checklist

of 23 items which were brought to the testing facility. The

most important items were:

- Backup board (in case of setup problems)

- Keyboard-Video-Mouse switch (KVM) to be able to

provide communication with the control PC

- Docking stations with additional USB-Ethernet adapters

to let operators have access to the lab network and the

Internet

During the Thorium Foil bootstrapping we’ve had a

physical access to the setup in Xilinx’s reliability lab. Basic

functionality at the beginning of the test development was

visually inspected. This approach was helpful in further efforts

to debug problems, and is suggested during test development.

Once basic functionality of the setup was ready, we made it

available remotely through Secure Shell (SSH) connection.

From this stage we tried to prototype the setup for the target

environment at the testing facility.

Our setup consisted of the Xilinx Zynq ZC702 board with

zc7020 soldered Ball Grid Array (BGA) XC7020 part.

 Figure 3: ZC702 board and ZC7020 Zynq chip

The board supports booting from Secure Digital (SD) card

and Quad-Serial Peripheral Interface (QSPI) flash card.

Initialy JTAG [9] was considered as a possible configuration

technique, because it provided the best instrumentation and

debugging capability. However, its speed and flexibility was

unacceptable for our needs. Additionally, it would add a lot of

complexity to our setup by forcing us to depend on a large

amount of software running on the PC controlling the

experiment. Measurements showed that QSPI provided the

fastest (2s) initialization time, but it had limited capacity. Our

OS (mentioned later) comes in the form of a 1MB Executable

and Linkable Format (ELF) file. To target testing toward the

functionality we were interested in, our medium had to hold

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

many ELF files, each with a slightly different configuration.

To solve the capacity problem, a hybrid approach has been

used for board startup: 250kB U-Boot loader [10] starts from

QSPI and loads our custom 1MB ELF files from the Ethernet

network through the Trivial File Transfer Protocol (TFTP)

protocol from the operator’s laptop. Thanks to this approach,

during one emergency case in which we realized one of

Zynq’s interrupt lines was wrongly configured, we were able

to quickly apply a fix to the source code, recompile our ELF

files and to deploy it to the experiment instantly.

IV: TESTING CODE AND BOOTSTRAPPING

The large number of hardened IP blocks presented a

problem for us, since providing SEU instrumentation for all of

these blocks would require significant software development

effort. Xilinx SDK software potentially gave us a good start to

research the path where testing software templates were

generated from the tool. However this solution has been

quickly postponed, since instrumentation necessary to provide

required feedback during testing was not present and would

require significant changes and big engineering effort, which

would be considered as a cost and which was not a real focus

of this project. For example: during initial Thorium Foil

testing we’ve understood that the chip’s memories are the

most likely to encounter upsets, which triggered large amount

of Data and Pre-fetch Aborts returned from the software

running on the Central Processing Unit (CPU). In the typical

embedded application running without Memory Management

Unit (MMU) enabled, Data and Pre-fetch aborts are rare, thus

no standardized library templates include capability of

handling them easily from the embedded application.

We only created reference static tests for memories from the

tool. The way the On-Chip Memory test program works is as

follows:

OCM-TEST:

- Load a known pattern to the memory

- Wait in the inactive state

- Read back and compare the memory

Interestingly, for testing L1 and L2 caches, the solution

wasn’t as straight-forward. In the process of test code

development we’ve learned L1 and L2 memories don’t

provide a mechanism for predictable population of the L1/L2

caches. A method devised by Xilinx for cache memory testing

helped us deliver data which match our theoretical predicted

values, and is currently being patented.

After cache memory testing, further testing is normally

conducted by running simplistic tests crafted to concentrate on

SEU upsets in Arithmetic Logic Unit (ALU), Floating Point

Unit (FPU) and memory units. However with Thorium Foil,

we haven’t observed any upsets that way since the ALU/FPU

area is very small in Zynq’s CPUs.

Xilinx’s approach to SEU characterization was instead to

model the real-world customer scenario in terms of the

functionality and the complexity of software running on the

Processing System. Running Linux was explored, but given

previous failures to run an industry-grade operating system

under radiation [11] [12] this approached was postponed.

Xilinx already has had an industry-grade testing

methodology called System-Level Test Operating System.

SLTOS is a custom-made Operating System (OS) equipped

with drivers to all peripherals within Zynq-7000, and comes

with extensive instrumentation. Maturity of SLTOS spoke for

itself, since for the last 10 years it has been successfully used

to catch 100+ silicon issues in Xilinx devices during pre- and

post-silicon testing and many more fixes applied to our

products. Short list of SLTOS features:

- run tests on both ARM CPUs and NEON units in parallel

- trigger simultaneous Direct Memory Access (DMA)

transfers from and to available memories

- run with interrupts and traps enabled and use them within

normal testing

- possibility of unexpected interrupts/trap detection

- through internal Analog-to-Digital Converter (ADC)

monitor the system for voltage and temperature changes

- provide text-file based configuration which lets to

customize SLTOS configuration (devices enabled,

instruction mix)

SLTOS upon detecting an upset prints a dump similar to

UNIX ``dmesg’’ command, from which exact cause of failure

can be obtained. Based on this data we derive information

such as MTTF and details on the failing IP block state.

Initial experiments with the SLTOS proved to be effective,

with significant amount of expected issues to be caught. Thus,

the decision was made to repurpose SLTOS for the SEU

testing. Changes added for SEU testing include

implementation of watchdog timers, a redundant Universal

Asynchronous Receiver/Transmitter (UART) connection, and

some additional monitoring of the board’s state.

Because of cost factors, our decision was to use Thorium

foil for most of the development and bootstrapping effort,

since it could be performed in-house at Xilinx. For the

Thorium foil, to enable the silicon die to receive the Alpha

particles, the chip’s molding compound protecting the die has

to be removed. This process is known as de-capping and is

achieved by applying nitric acid to the chip’s cover. Depicted

is the de-capped Zynq chip:

Figure 4: Incorrectly de-capped part with leftovers of

 molding compound (left), and correctly de-capped

 part (right)

 Several attempts were required to get the device with the

compound de-capped enough to expose the whole die to alpha

particles. For units where this process failed [Picture 4],

detailed testing showed unexpected characteristics, e.g.: for a

unit where L1 cache was still protected, we haven’t observed

any memory upsets. Because of that, it is advised to run static

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

tests on basic memories first, so that after dynamic tests are

started, one can be convinced that the results reflect real

system’s behavior.

Die covers act as a protecting surface of the compound, and

us removing it resulted in devices becoming more fragile. We

believe at least 2 devices were destroyed in the process of

plugging the device into the open-top socket.

To eliminate this problem, we’ve devised a new way to use

Thorium foil with de-capped units: we use standard BGA

closed-lid sockets which Xilinx boards are designed for, and

in which Thorium foil is trapped in a device and covered by a

socket’s metal lid. The advantage of this method is that

device, once mounted in a socket, is protected from external

conditions such as humidity and dust and has proven to work

very reliably. We’ve used the same device for many weeks

during the initial bootstrapping. Disadvantage of this method

is that the expensive socket becomes contaminated with

Thorium and must be properly disposed when it does.

Figure 5: Thorium-foil placement, as used before (left) and

 after proposed change of the foil location (right)

Initial setup was invaluable for the development of the

testing infrastructure. Choice to use the Xilinx developed

ZC702 board was very good, since it let us to get assistance

from Xilinx board’s group. Also having an access to multiple

boards of the same type was helpful, since in case of

problems, it was important to understand whether it’s a setup

problem, or an issue related to the Alpha radiation. We ended

up having a separate replicated setup with a normal, soldered

part in a room conditions just for the purposes of bug

reproducing.

SEU testing was not a supported use case for a customer

board, and as a result of that several issues had to be

addressed. For example: frequent power-cycling of the board

caused problems with control PC’s USB controller, since each

time the board was power-cycled, the USB subsystem required

the USB enumeration to happen to correctly attach the

required drier to our USB-UART connection. This behavior

was initially believed to be a result of radiation and the

problem on a board’s side, but turned out to be general

systems problem.

Minor change to USB-controled relay to use System-Reset

was made, to keep the USB UART powered during the reset

procedure. Because of this approach, the system has become

more similar to a real-world scenario where power is likely to

be applied to the system permanently, and USB UART

remained powered during the reset procedure, and didn’t cause

any additional problems.

Number of elements of the system was believed to need a

redundant replacement. For example we’ve implemented a

support for the 2
nd

 UART in SLTOS, in case UART

connection gets impacted. However it turned out to not be

necessary. We have not observed problems with UART in our

testing.

V: AUTOMATION

Automation has been present in our in-house experiments,

but was based on the company-wide automation system. The

automation system gives us an ability to power board on and

off, reset the CPU, connect to UART and schedule jobs in

isolated way on the boards and this is how test-driving with

Thorium Foil has been done. Xilinx automation however

makes an extensive use of Xilinx network resources, NFS

filesystem and other complex tools which made direct porting

of the system to the standalone PC environment very hard.

Upon a success with the foil, we decided to develop our SEU

automation from scratch so that we could run experiments in

the proton beam facility in a similar way.

The testing facility doesn’t provide any automation, other

than the ability to synchronize through with the cyclotron.

This mechanism is only available to older computers with

PCMCIA interface and specialized card, which we didn’t

know about upfront. Thus we didn’t make use of this

specialized interface.

Our framework is entirely software based, and is distributed

across 3 computers, which synchronize together and track the

progress of each experiment made. Unlike standard testing, we

have all computers participating in the experiment bridged in a

common Ethernet network. Ethernet was much more

convenient for the purposes of testing, since in case of failure,

we were able to quickly fetch log files from the control PC

and back it up on operator’s laptops (in case control PC would

crash) as well as to plot the results. For this to happen, it was

necessary to plug a USB-Ethernet adapter to the beam control

PC and reconfiguring it to be able to communicate with

operator’s laptops. Every computer, when connected to the

Ethernet switch could communicate with each other.

Pictured is a diagram of elements in our infrastructure:

Figure 6: Elements of our infrastructure

The operator PC is a laptop running Microsoft Windows 7.

The beam PC is connected directly to the cyclotron beam and

came with Microsoft Windows XP. It has the BeamOn 6.30.10

program installed for communication and control of the beam.

Both computers are located in the operator’s room. The

control PC was running the FreeBSD UNIX, which provides

excellent stability [13]. The control PC is running a main

management program, and algorithm executed is a loop:

A) Reset the system and wait for the boot-loader to start

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

B) Issue a command to download an ELF binary and wait for

it to finish

C) Run the binary and wait for the board to initialize

correctly

D) Start running tests

E) Start the beam

F) Wait till upset reported

G) Stop the beam

H) Obtain a dump

I) Goto A

Steps A-D prepare the setup and are performed without any

radiation applied to the setup. To control the setup reset

functionality, we wired USB-controlled relay to board’s POR

reset pins. We wrote a ``usb_power’’ control program based

the ``libusb library’’ [14] and operated from within our

framework.

 Step E is the most important and is accomplished by our

framework sending mouse/keyboard events through the

network from the Control PC to the Beam PC. Automation of

that kind was necessary, since we haven’t had any other way

to provide automation of BeamOn program because it is a

GUI application. Sending mouse and keyboard events required

calibration, but worked extremely robustly after initial setup.

Once the beam was started, framework awaits for potential

upsets. Detection is performed by continuous monitoring of

the UART output. Once the triggering warning or unexpected

output is seen, framework stops the beam in step (H) and waits

for information dump to be printed out. Dump is recorded on

the Control PC disk through the ``cu’’ terminal program, and

then the whole algorithm restarts itself.

The most important function of the framework is

monitoring for unexpected situations. The table presents

approximated maximal time for the certain stages of the setup

and SLTOS startup which are considered acceptable:

Name of the stage Timeout value [s]

Boot-loader 2

OS fetch from network 5

SLTOS boot 35

Test execution 500

Dumping data 1000

 Table 2: Maximal time for the certain stages of the DUT

 startup

Our framework implements a timed state machine and with

each timeout, the framework stops the beam and restarts the

experiment.

Automation of that kind provided Xilinx an opportunity to

run several hundreds of experiments in the facility during

two 2-day visits to the Crocker Nuclear Lab.

IV: SUMMARY

Presented is a description of the testing methodology

developed by Xilinx for the purposes of SEU impact

assessment in Xilinx Zynq SoC family of products. We state

that the presented method for Thorium Foil testing can be

valuable for efforts requiring significant investment in time,

where reliable configuration is necessary. We believe general

guideline for experiment operating in the testing facility can

be valuable and help to prevent others from unexpected

surprises while conducting experiments. We claim that

developed framework has helped us perform at least 5 times

more experiments to what could physically be possible

without our automated approach.

IV: ACKNOWLEDGEMENTS

The authors would like to thank Nathalie Chan King Choy

and Dan Isaacs for providing feedback and suggestions during

the writing of this paper and Jeff Barton and Gary Swift for

their help during the project.

V: REFERENCES

[1] Q. Heather, "61(2):766-786. DOI: 10.1109/TNS.2014.2302432," IEEE

Transactions on Nuclear Science, no. April 2014, pp. 766 - 786, 2014.

[2] Austin Lesea, Wojciech Koszek, Glenn Stainer, Gary Swift, Dagan
White, "Soft Error Study of ARM SoC at 28 Nanometers," SELSE2014,

2012.

[3] http://www.xilinx.com/support/documentation/user_guides/ug585-
Zynq-7000-TRM.pdf, Zynq-7000 All Programmable SoC Technical

Reference Manual.

[4] http://bit.ly/13JVJat, AXI Reference Guide.

[5] http://www.arm.com/products/processors/cortex-a/cortex-a9.php,

Cortex-A9 Processor.

[6] D. White, Considerations Surrounding Single Event Effects in FPGAs,
ASICs, and Processors, http://bit.ly/1zdlXiw.

[7] G. Swift, "Dynamic testing of Xilinx Virtex-II field programmable gate

array (FPGA) input/output blocks (IOBs)," IEEE Transactions on
Nuclear Science,, no. Dec. 2004, pp. 3469 - 3474, 2004.

[8] I. Xilinx, "Device Reliability Report," http://bit.ly/16A481b.

[9] I. 1. W. Group, "Standard Test Access Port and Boundary-Scan
Architecture," http://grouper.ieee.org/groups/1149/1/.

[10] D. S. Engineering, "Das U-Boot," www.denx.de/wiki/U-Boot.

[11] F. Irom, "Guideline for Ground Radiation Testing of Microprocessors in
the Space Radiation Environment," Jet Propulsion Laboratory , 2008.

[12] A. B. D.M. Hiemstra, "Single event upset characterization of the

Pentium(R) MMX and Pentium(R) II microprocessors using proton
irradiation," 2000.

[13] http://www.freebsd.org, "The FreeBSD Project," 1993-

2014.

[14] http://www.libusb.org/, "The LibUSB Library".

