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Abstract—This paper presents a test methodology developed at 

Xilinx for real-time soft-error rate testing as well as the software 

framework in which Device-Under-Test (DUT) and controlling 

computer are both synchronized with the proton beam controls 

and run experiments automatically in a predictable manner. The 

method presented has been successfully used for Zynq®-7000 All 

Programmable SoC testing at the UC Davis Crocker Nuclear 

Lab. Presented are the issues and challenges encountered during 

design and implementation of the framework, as well as lessons 

learned from the in-house experiments and bootstrapping tests 

performed with Thorium Foil. The method presented has helped 

Xilinx to deliver high-quality experimental data and to optimize 

time spent in the testing facility. 

Keywords—Error detection, soft error, architectural 

vulnerability, statistical error, confidence level, beam facility 

control 

I. INTRODUCTION 

To assess the impact of Single Event Upset on silicon 

systems, empirical data are necessary.  The data are typically 

gathered from a DUT equipped with instrumentation and 

exposed to a radiation source such as Thorium foil or a high-

energy particle beam. Most efforts are targeted towards so-

called one-shot testing, where each exposure is followed by a 

manual read-back from the DUT and data validity check [1]. 

Regardless of the facility or source of radiation used, 

following is an algorithm representing a typical testing 

scenario: 

 

SEU-TESTING: 

1) Understand general setup and device behavior 

2) Tuning the source of radiation to the setup 

3) Conducting a static or dynamic test of the DUT 

4) Analyzing experimental data 

5) Repeat from (3) until enough samples are obtained 

 

Steps 1 and 2 are important, since they help to understand 

the scope of testing effort and help with planning, but they are 

performed only once per visit to the facility, optimizing them 

is not critical and may not bring significant benefits. We 

believe that for the general silicon testing this technique may 

be appropriate, however we argue that a more methodic 

approach for System-on-Chip (SoC) testing is necessary to 

deliver reliable data with less error margin and higher 

confidence. This paper presents results [2] of a 4-month 

project to characterize the Zynq-7000 SoC. 

The rest of the paper is organized as follows: In Part II, we 

 

present initial goals and technical assumptions made before 

infrastructure the effort start. Part III discusses technical 

details behind the setup used and testing facility. Part IV 

explains the choice of test code and the process of 

bootstrapping our test-bench environment. Part V explains our 

automation testing framework used. Park VI presents 

summary and discussion on our results. 

 

II: GOALS AND ASSUMPTIONS 

 

The Xilinx Zynq-7000 SoC is a 28nm SoC device [3] where 

FPGA Programmable Fabric is bridged through a high-speed 

AXI interface [4] to a dual-core ARM Cortex-A9 [5] 

Processing System. Within the Processing System are multiple 

hard IP blocks surrounding the CPU. A high level block 

diagram of the Zynq-7000 SoC structure is depicted on the 

following diagram: 

 
Figure 1: Diagram showing a structure of Zynq SoC 

 

  Xilinx has extensive prior experience with SEU 

characterization in Field-Programmable Gate Array (FPGA) 

devices [6] [7] , and its results are publicly available [8], 

however SoC testing with an ARM Processing System has 

never been performed. For the purposes of testing, significant 

planning effort has been accomplished. Zynq SEU 

characterization was a result of work of R&D, A&D, 

Marketing and System Software groups, and the requirements 

were set after many weeks of discussions. The list of things 

which were to be tested includes, but is not limited to: 

 

- Testing of L1, L2 cache and On-Chip-Memory (OCM) 
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- Testing of both ARM Cortex-A9 cores together with 

NEON SIMD ISA 

- Testing of DDR controller and AXI interconnect 

- Testing of of other hardened blocks suc as Snoop Control 

Unit (SCU) 

 

To reach the expected confidence levels and to provide 

comprehensive data on each of the blocks, the general idea 

was that thousands of data samples were necessary. It is 

important to mention that the large part of the design was 

driven by the need to minimize costs of the testing effort. The 

following table presents approximated hourly rates of the 

known testing facilities: 

 

   Facility   USD / Hr 

   Thorium foil 0000 

   Proton 8  700-950 

   Neutron 1000-1500 

 

   Table 1: Average hourly rate of known test facilities 

 

For example, with a price as high as 850USD/Hr, the 35 

second boot time of the operating system costs: 
 

850𝑈𝑆𝐷

3600𝑠
 × 35𝑠 ≈ 8.26𝑈𝑆𝐷 

 

With a plan to perform several hundred experiments, it was 

very important to remove unnecessary wasted time on board 

startup. To be able to achieve such effort, members of our 

team had both hardware and software background. Moreover 

some members were not exposed to Single-Event-Upset 

(SEU) testing before. Xilinx performs many visits to beam 

testing facilities per year, and one of such visits has been used 

to educate the team and to predict possible challenges of the 

environment. 

 

III: TESTING FACILITY AND THE SETUP 

 

The following figure 2 shows the layout of the control 

facility with a typical setup: 

 

 
 

Figure 2: Typical control facility and DUT placement 

 

Some of difficulties encountered include: 

- Control room separated from beam room 

o Limited visibility of the setup, only though the 

video camera 

- Connectivity with the DUT is limited 

o Typically RS232 (serial port) with cable 

expanders. Impossible with modern boards due 

to USB cables. Solved by placing a PC in the 

beam room 

- Highly-reliable board/setup is required, since stopping the 

experimentation to adjust the DUT is very expensive 

- Heterogeneous environment within the lab 

- Many computers running different software with different 

operating systems 

 

The beam facility provides only rudimentary equipment, 

thus for purposes of extensive testing we devised a checklist 

of 23 items which were brought to the testing facility. The 

most important items were: 

- Backup board (in case of setup problems) 

- Keyboard-Video-Mouse switch (KVM) to be able to 

provide communication with the control PC 

- Docking stations with additional USB-Ethernet adapters 

to let operators have access to the lab network and the 

Internet 

 

During the Thorium Foil bootstrapping we’ve had a 

physical access to the setup in Xilinx’s reliability lab. Basic 

functionality at the beginning of the test development was 

visually inspected. This approach was helpful in further efforts 

to debug problems, and is suggested during test development. 

Once basic functionality of the setup was ready, we made it 

available remotely through Secure Shell (SSH) connection. 

From this stage we tried to prototype the setup for the target 

environment at the testing facility. 

Our setup consisted of the Xilinx Zynq ZC702 board with 

zc7020 soldered Ball Grid Array (BGA) XC7020 part.  

 

 

 

   Figure 3: ZC702 board and ZC7020 Zynq chip 

 

The board supports booting from Secure Digital (SD) card 

and Quad-Serial Peripheral Interface (QSPI) flash card. 

Initialy JTAG [9] was considered as a possible configuration 

technique, because it provided the best instrumentation and 

debugging capability. However, its speed and flexibility was 

unacceptable for our needs. Additionally, it would add a lot of 

complexity to our setup by forcing us to depend on a large 

amount of software running on the PC controlling the 

experiment. Measurements showed that QSPI provided the 

fastest (2s) initialization time, but it had limited capacity. Our 

OS (mentioned later) comes in the form of a 1MB Executable 

and Linkable Format (ELF) file. To target testing toward the 

functionality we were interested in, our medium had to hold 
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many ELF files, each with a slightly different configuration. 

To solve the capacity problem, a hybrid approach has been 

used for board startup: 250kB U-Boot loader [10] starts from 

QSPI and loads our custom 1MB ELF files from the Ethernet 

network through the Trivial File Transfer Protocol (TFTP) 

protocol from the operator’s laptop. Thanks to this approach, 

during one emergency case in which we realized one of 

Zynq’s interrupt lines was wrongly configured, we were able 

to quickly apply a fix to the source code, recompile our ELF 

files and to deploy it to the experiment instantly. 

 

IV: TESTING CODE AND BOOTSTRAPPING 

 

The large number of hardened IP blocks presented a 

problem for us, since providing SEU instrumentation for all of 

these blocks would require significant software development 

effort. Xilinx SDK software potentially gave us a good start to 

research the path where testing software templates were 

generated from the tool. However this solution has been 

quickly postponed, since instrumentation necessary to provide 

required feedback during testing was not present and would 

require significant changes and big engineering effort, which 

would be considered as a cost and which was not a real focus 

of this project. For example: during initial Thorium Foil 

testing we’ve understood that the chip’s memories are the 

most likely to encounter upsets, which triggered large amount 

of Data and Pre-fetch Aborts returned from the software 

running on the Central Processing Unit (CPU). In the typical 

embedded application running without Memory Management 

Unit (MMU) enabled, Data and Pre-fetch aborts are rare, thus 

no standardized library templates include capability of 

handling them easily from the embedded application. 

We only created reference static tests for memories from the 

tool. The way the On-Chip Memory test program works is as 

follows: 

 

OCM-TEST: 

- Load a known pattern to the memory 

- Wait in the inactive state 

- Read back and compare the memory 

 

Interestingly, for testing L1 and L2 caches, the solution 

wasn’t as straight-forward. In the process of test code 

development we’ve learned L1 and L2 memories don’t 

provide a mechanism for predictable population of the L1/L2 

caches. A method devised by Xilinx for cache memory testing 

helped us deliver data which match our theoretical predicted 

values, and is currently being patented. 

After cache memory testing, further testing is normally 

conducted by running simplistic tests crafted to concentrate on 

SEU upsets in Arithmetic Logic Unit (ALU), Floating Point 

Unit (FPU) and memory units. However with Thorium Foil, 

we haven’t observed any upsets that way since the ALU/FPU 

area is very small in Zynq’s CPUs. 

Xilinx’s approach to SEU characterization was instead to 

model the real-world customer scenario in terms of the 

functionality and the complexity of software running on the 

Processing System. Running Linux was explored, but given 

previous failures to run an industry-grade operating system 

under radiation [11] [12] this approached was postponed. 

Xilinx already has had an industry-grade testing 

methodology called System-Level Test Operating System. 

SLTOS is a custom-made Operating System (OS) equipped 

with drivers to all peripherals within Zynq-7000, and comes 

with extensive instrumentation. Maturity of SLTOS spoke for 

itself, since for the last 10 years it has been successfully used 

to catch 100+ silicon issues in Xilinx devices during pre- and 

post-silicon testing and many more fixes applied to our 

products. Short list of SLTOS features: 

 

- run tests on both ARM CPUs and NEON units in parallel 

- trigger simultaneous Direct Memory Access (DMA) 

transfers from and to available memories 

- run with interrupts and traps enabled and use them within 

normal testing 

- possibility of unexpected interrupts/trap detection 

- through internal Analog-to-Digital Converter (ADC) 

monitor the system for voltage and temperature changes 

- provide text-file based configuration which lets to 

customize SLTOS configuration (devices enabled, 

instruction mix) 

 

SLTOS upon detecting an upset prints a dump similar to 

UNIX ``dmesg’’ command, from which exact cause of failure 

can be obtained. Based on this data we derive information 

such as MTTF and details on the failing IP block state. 

Initial experiments with the SLTOS proved to be effective, 

with significant amount of expected issues to be caught. Thus, 

the decision was made to repurpose SLTOS for the SEU 

testing. Changes added for SEU testing include 

implementation of watchdog timers, a redundant Universal 

Asynchronous Receiver/Transmitter (UART)  connection, and 

some additional monitoring of the board’s state. 

Because of cost factors, our decision was to use Thorium 

foil for most of the development and bootstrapping effort, 

since it could be performed in-house at Xilinx. For the 

Thorium foil, to enable the silicon die to receive the Alpha 

particles, the chip’s molding compound protecting the die has 

to be removed. This process is known as de-capping and is 

achieved by applying nitric acid to the chip’s cover. Depicted 

is the de-capped Zynq chip: 

              

             
 

Figure 4: Incorrectly de-capped part with leftovers of    

     molding compound (left), and correctly de-capped 

     part (right) 

 

 Several attempts were required to get the device with the 

compound de-capped enough to expose the whole die to alpha 

particles. For units where this process failed [Picture 4], 

detailed testing showed unexpected characteristics, e.g.: for a 

unit where L1 cache was still protected, we haven’t observed 

any memory upsets. Because of that, it is advised to run static 
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tests on basic memories first, so that after dynamic tests are 

started, one can be convinced that the results reflect real 

system’s behavior. 

Die covers act as a protecting surface of the compound, and 

us removing it resulted in devices becoming more fragile. We 

believe at least 2 devices were destroyed in the process of 

plugging the device into the open-top socket.  

To eliminate this problem, we’ve devised a new way to use 

Thorium foil with de-capped units: we use standard BGA 

closed-lid sockets which Xilinx boards are designed for, and 

in which Thorium foil is trapped in a device and covered by a 

socket’s metal lid. The advantage of this method is that 

device, once mounted in a socket, is protected from external 

conditions such as humidity and dust and has proven to work 

very reliably. We’ve used the same device for many weeks 

during the initial bootstrapping. Disadvantage of this method 

is that the expensive socket becomes contaminated with 

Thorium and must be properly disposed when it does. 

 

                
 

Figure 5: Thorium-foil placement, as used before (left) and  

     after proposed change of the foil location (right) 

 

Initial setup was invaluable for the development of the 

testing infrastructure. Choice to use the Xilinx developed 

ZC702 board was very good, since it let us to get assistance 

from Xilinx board’s group. Also having an access to multiple 

boards of the same type was helpful, since in case of 

problems, it was important to understand whether it’s a setup 

problem, or an issue related to the Alpha radiation. We ended 

up having a separate replicated setup with a normal, soldered 

part in a room conditions just for the purposes of bug 

reproducing. 

SEU testing was not a supported use case for a customer 

board, and as a result of that several issues had to be 

addressed.  For example: frequent power-cycling of the board 

caused problems with control PC’s USB controller, since each 

time the board was power-cycled, the USB subsystem required 

the USB enumeration to happen to correctly attach the 

required drier to our USB-UART connection. This behavior 

was initially believed to be a result of radiation and the 

problem on a board’s side, but turned out to be general 

systems problem.  

Minor change to USB-controled relay to use System-Reset 

was made, to keep the USB UART powered during the reset 

procedure. Because of this approach, the system has become 

more similar to a real-world scenario where power is likely to 

be applied to the system permanently, and USB UART 

remained powered during the reset procedure, and didn’t cause 

any additional problems. 

Number of elements of the system was believed to need a 

redundant replacement. For example we’ve implemented a 

support for the 2
nd

 UART in SLTOS, in case UART 

connection gets impacted. However it turned out to not be 

necessary. We have not observed problems with UART in our 

testing. 

 

 

V: AUTOMATION 

 

Automation has been present in our in-house experiments, 

but was based on the company-wide automation system. The 

automation system gives us an ability to power board on and 

off, reset the CPU, connect to UART and schedule jobs in 

isolated way on the boards and this is how test-driving with 

Thorium Foil has been done. Xilinx automation however 

makes an extensive use of Xilinx network resources, NFS 

filesystem and other complex tools which made direct porting 

of the system to the standalone PC environment very hard. 

Upon a success with the foil, we decided to develop our SEU 

automation from scratch so that we could run experiments in 

the proton beam facility in a similar way. 

The testing facility doesn’t provide any automation, other 

than the ability to synchronize through with the cyclotron. 

This mechanism is only available to older computers with 

PCMCIA interface and specialized card, which we didn’t 

know about upfront. Thus we didn’t make use of this 

specialized interface. 

Our framework is entirely software based, and is distributed 

across 3 computers, which synchronize together and track the 

progress of each experiment made. Unlike standard testing, we 

have all computers participating in the experiment bridged in a 

common Ethernet network. Ethernet was much more 

convenient for the purposes of testing, since in case of failure, 

we were able to quickly fetch log files from the control PC 

and back it up on operator’s laptops (in case control PC would 

crash) as well as to plot the results. For this to happen, it was 

necessary to plug a USB-Ethernet adapter to the beam control 

PC and reconfiguring it to be able to communicate with 

operator’s laptops. Every computer, when connected to the 

Ethernet switch could communicate with each other. 

Pictured is a diagram of elements in our infrastructure: 

 

      
 

Figure 6: Elements of our infrastructure 

 

The operator PC is a laptop running  Microsoft Windows 7. 

The beam PC is connected directly to the cyclotron beam and 

came with Microsoft Windows XP. It has the BeamOn 6.30.10 

program installed for communication and control of the beam. 

Both computers are located in the operator’s room. The 

control PC was running the FreeBSD UNIX, which provides 

excellent stability [13]. The control PC is running a main 

management program, and algorithm executed is a loop: 

 

A) Reset the system and wait for the boot-loader to start 
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B) Issue a command to download an ELF binary and wait for 

it to finish 

C) Run the binary and wait for the board to initialize 

correctly 

D) Start running tests 

E) Start the beam 

F) Wait till upset reported 

G) Stop the beam 

H) Obtain a dump 

I) Goto A 

 

Steps A-D prepare the setup and are performed without any 

radiation applied to the setup. To control the setup reset 

functionality, we wired USB-controlled relay to board’s POR 

reset pins. We wrote a ``usb_power’’ control program based 

the ``libusb library’’ [14] and operated from within our 

framework.  

 Step E is the most important and is accomplished by our 

framework sending mouse/keyboard events through the 

network from the Control PC to the Beam PC. Automation of 

that kind was necessary, since we haven’t had any other way 

to provide automation of BeamOn program because it is a 

GUI application. Sending mouse and keyboard events required 

calibration, but worked extremely robustly after initial setup.  

Once the beam was started, framework awaits for potential 

upsets. Detection is performed by continuous monitoring of 

the UART output. Once the triggering warning or unexpected 

output is seen, framework stops the beam in step (H) and waits 

for information dump to be printed out. Dump is recorded on 

the Control PC disk through the ``cu’’ terminal program, and 

then the whole algorithm restarts itself. 

The most important function of the framework is 

monitoring for unexpected situations. The table presents 

approximated maximal time for the certain stages of the setup 

and SLTOS startup which are considered acceptable: 

                

Name of the stage Timeout value [s] 

Boot-loader 2 

OS fetch from network 5 

SLTOS boot 35 

Test execution 500 

Dumping data 1000 

 

 Table 2: Maximal time for the certain stages of the DUT                                                                    

     startup 

 

Our framework implements a timed state machine and with 

each timeout, the framework stops the beam and restarts the 

experiment. 

Automation of that kind provided Xilinx an opportunity to 

run several hundreds of experiments in the facility during   

two 2-day visits to the Crocker Nuclear Lab.  

 

 

 

 

 

 

 

IV: SUMMARY 

 

Presented is a description of the testing methodology 

developed by Xilinx for the purposes of SEU impact 

assessment in Xilinx Zynq SoC family of products. We state 

that the presented method for Thorium Foil testing can be 

valuable for efforts requiring significant investment in time, 

where reliable configuration is necessary. We believe general 

guideline for experiment operating in the testing facility can 

be valuable and help to prevent others from unexpected 

surprises while conducting experiments. We claim that 

developed framework has helped us perform at least 5 times 

more experiments to what could physically be possible 

without our automated approach. 
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